Basic definitions and concepts in Mathematics

1. Set

Set is a basic concept in Mathematics; it is a collection of well-defined objects.
$S=\{x \mid P(x)\}$: set S contains elements $x^{\prime} s$ which has the property $P(x)$
E.g.: set of odd numbers $O=\{1,3,5 \ldots\}$ or $O=\{n \mid n=2 \cdot m+1$ where $m=1,2,3,4 \ldots\}$, people in a city taller than 185 cm
2. Union of two sets:

Union of set A and B is a set denoted with $A \cup B$, which contains elements (x) belong to either A or B or both.
$A \cup B=\{x \mid x \in A$ or $x \in B\}(x \in A$: x is in set $A ; x \notin B$: is not in set $B)$
$A=\{1,3,5,7,9\}, B=\{3,6,9\}$
$A \cup B=\{1,3,5,6,7,9\}$
3. Intersection of two sets

Intersection of set A and B is a set denoted with $A \cap B$, which contains elements (x) belong to both A and B.
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
$A=\{1,3,5,7,9\}, B=\{3,6,9\}$
$A \cap B=\{3,9\}$
4. Subset

Set S is subset of set U if, and only if, every element of S is an element of T. (All elements of S is the element of T but T can have elements, which are not in S)
$\mathrm{S} \subseteq \mathrm{U}$ or $\mathrm{U} \supseteq \mathrm{S}$
$U=\{1,3,5,7,9\}, S=\{3,9\} \Rightarrow S \subseteq U$
5. Empty or null set (\varnothing), universal set (U)

Empty set has no elements, so it is the subset of all sets.
Universal set is the totality of all elements under consideration.

6. Set of Numbers

\mathbb{N} : natural numbers: 1,2,3 ...
\mathbb{Z} : integers: ... $-2,-1,0,1,2 \ldots$
$\mathbb{Q}:$ rational numbers: $\ldots-\frac{11}{9}, 0, \frac{3}{7}, 1=\frac{7}{7}, \ldots$
\mathbb{I} : irrational numbers: $\sqrt{3}, \pi, e$ (Euler's number), $-\sqrt[5]{7}$, the not rational numbers
$\mathbb{R}=\mathbb{Q} \cup \mathbb{I}$: real numbers: every numbers above

7. Definition of a function

Function f from a set A into a set $B(f: A \rightarrow B)$ is a correspondence that assigns each element x from $A(x \in A)$ exactly one element y from $B(y \in B)$: y is called the image of x under f and denoted with $f(x)$. Domain of f (notation: D_{f}) is A, and the range $f(A)=\{f(x)$ where $x \in A\}\left(R_{f}\right)$.
8. A linear equation in one variable x is an equation that can be written in the standard form $a x+b=0$ where a and b are real numbers with $a \neq 0$.

The solution is: $x=-\frac{b}{a}$
9. A quadratic equation in is an equation that can be written in the general form $a x^{2}+b x+c=0=\left(x-x_{1}\right)\left(x-x_{2}\right)$ where a, b and c are real numbers, with $a \neq 0$. A quadratic equation is also known as a second-degree polynomial equation.

Solution is
$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
10. Definition and identities of power

The $n^{\text {th }}$ power of $x: x^{n}=x \cdot x \cdot x \cdot \ldots \cdot x$ where total number of x is n, n is a natural number.

1. $x^{n} \cdot x^{m}=x^{(n+m)}$
2. $x^{n} \cdot y^{n}=(x \cdot y)^{n}$
3. $\left(x^{n}\right)^{m}=x^{n \cdot m}$
4. $\frac{1}{x^{n}}=x^{-n}$
5. $x^{0}=1, x^{1}=x$
6. Definition and identities of radical

The $n^{\text {th }}$ root of $x: \sqrt[n]{x}=y$ if $y^{n}=x$ where $x \geq 0, n \geq 1$

1. $x^{\frac{1}{n}}=\sqrt[n]{x}$
2. $\sqrt[n]{x} \cdot \sqrt[m]{x}=(\sqrt[n \cdot m]{x})^{n+m}$
3. $\sqrt[m]{\sqrt[n]{x}}=\sqrt[n \cdot m]{x}$
4. $\sqrt[n]{x} \sqrt[n]{y}=\sqrt[n]{x \cdot y}$
5. Definition and identities of logarithm

Logarithm x to base a equals y, shortly: $\log _{a} x=y$ if $y^{a}=x$ where $a \neq 1, a>0, b>0$.

1. $\log _{a} x+\log _{a} y=\log _{a}(x \cdot y)$
2. $\log _{a} x^{c}=c \cdot \log _{a} x$
3. $\log _{a} x=\frac{\log _{c} x}{\log _{c} a}$
4. $\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}$
5. $\log _{a} 1=0 ; \log _{a} a=1$
6. Definition and identities of exponential
$f(x)=a^{x}$ function is called exponential function, where ' a ' is constant and a real number, x, y are real number
7. $a^{x} \cdot a^{y}=a^{(x+y)}$
8. $a^{x} \cdot b^{x}=(a \cdot b)^{x}$
9. $\left(a^{x}\right)^{y}=a^{x \cdot y}$
10. $\frac{1}{a^{x}}=a^{-x}$
